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SUMMARY

Cell-type plasticity within a tumor has recently
been suggested to cause a bidirectional conversion
between tumor-initiating stem cells and nonstem
cells triggered by an inflammatory stroma. NF-«xB
represents a key transcription factor within the
inflammatory tumor microenvironment. However,
NF-kB’s function in tumor-initiating cells has not
been examined yet. Using a genetic model of intes-
tinal epithelial cell (IEC)-restricted constitutive Wnt-
activation, which comprises the most common event
in the initiation of colon cancer, we demonstrate that
NF-kB modulates Wnt signaling and show that IEC-
specific ablation of RelA/p65 retards crypt stem cell
expansion. In contrast, elevated NF-kB signaling
enhances Wnt activation and induces dedifferentia-
tion of nonstem cells that acquire tumor-initiating
capacity. Thus, our data support the concept of
bidirectional conversion and highlight the impor-
tance of inflammatory signaling for dedifferentiation
and generation of tumor-initiating cells in vivo.

INTRODUCTION

The transition of an intestinal epithelial cell (IEC) into a fully
transformed metastatic intestinal cancer cell follows a series of
activating and inactivating mutations in various oncogenes and
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tumor suppressors, respectively (Fearon, 2011). The initiating
event of intestinal carcinogenesis is most commonly caused
by activating mutations in the Wnt-pathway (i.e., in APC or
CTNNB), that lead to stabilization of B-catenin and subsequent
constitutive transcription by a B-catenin/Tcf complex (Bienz
and Clevers, 2000). This triggers expansion and transformation
of the stem cell compartment and leads subsequently to the
development of adenomatous polyps (van de Wetering et al.,
2002). During the course of tumorigenesis, additional mutations
in other oncogenes and tumor suppressors such as KRAS and
TP53 are usually acquired (Fearon, 2011). In the untransformed
intestine, two types of multipotent stem cells have been identi-
fied: the first comprises a population of rapidly cycling cells at
the crypt base expressing the Wnt-target gene leucine-rich-
repeat-containing G protein coupled receptor 5 (Lgr5) (Barker
et al., 2007). The second pool consists of quiescent Bmil-
expressing cells that can mostly be found above the crypt
base (Sangiorgi and Capecchi, 2008) and that have the capacity
to regenerate Lgr5* cells upon tissue injury (Tian et al., 2011).
Because of the frequent observation that very early adenoma-
tous polyps are found at the top of colonic crypts without any
contact to the stem cell compartment (Cole and McKalen,
1963) the so-called “top-down model of adenoma morphogen-
esis” has been suggested (Shih et al., 2001). However, recent
genetic evidence provided support for the “bottom-up histogen-
esis” (Preston et al., 2003) when it was shown that Lgr5* or
Bmi1* stem cells can act as the cells of origin of intestinal cancer
in mice (Barker et al., 2009; Sangiorgi and Capecchi, 2008).
Various forms of chronic inflammation increase the risk of
several common cancers (Grivennikov et al., 2010). Moreover,
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Figure 1. Stabilization of B-Catenin in IEC Induces Stem Cell Expansion and NF-kB Activation
(A-H) Representative H&E stained sections (A, B, E, and F) as well as immunohistochemical stainings (C, D, G, and H) of small intestines from unchallenged
wild-type (A-D) or 3-cat®® mice (E-H) 25 days after the first tamoxifen administration.
(I) Kaplan-Meier survival curve of -cat®® mice.
(J) Elevated IkB-kinase activity in IEC of §-cat®® mice 21 days after tamoxifen administration.
(K) NF-kB binding activity in IEC of -cat®* mice 15 or 21 days after tamoxifen administration.
(L and M) Immunohistochemical staining of RelA/p65 in wild-type (L) and -cat®® mice (M).
(legend continued on next page)
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long-term administration of nonsteroidal anti-inflammatory
drugs (NSAIDs) such as aspirin can be tumor preventive and
significantly reduce incidence of many solid tumor entities,
including colorectal cancer (Rothwell et al., 2011), suggesting a
specific effect of low-grade inflammation in this context. How-
ever, the exact mechanisms by which NSAIDS can provide
chemoprevention remain to be defined. The transcription factor
NF-kB, a master regulator of cell survival, inflammation, and
immunity, has been shown to comprise a key link between
inflammation and cancer (Karin and Greten, 2005). First, genetic
evidence came from a mouse model of colitis-associated
cancer, where lkB-kinase (IKK)B-dependent NF-«kB activity in
IEC promoted survival of initiated cells, whereas in myeloid cells
it controlled the transcription of genes encoding proinflamma-
tory cytokines that can stimulate proliferation in a paracrine
manner (Greten et al., 2004). Additional proof for NF-kB’s direct
and indirect effects on tumor promotion and progression has
originated from several animal models of hepatocellular carci-
noma, gastric cancer, and lung cancer (Bollrath and Greten,
2009). The canonical NF-kB activation pathway is triggered by
a variety of stimuli including TNF-«, IL-1p, and pathogen-associ-
ated molecular patterns (PAMPs), which upon binding to their
respective receptors activate the IKK complex. As a conse-
quence, IKK phosphorylates NF-kB-bound IkBs and targets
them for ubiquitin-dependent degradation, thus allowing liber-
ated NF-«B dimers to enter the nucleus. In case of the canonical
NF-kB activation, this mainly depends on the IKKy and IKKf
subunits of the IKK complex (Bollrath and Greten, 2009).

Although there is substantial evidence for a role of NF-«xB in
tumor promotion and progression, so far its contribution to tumor
initiation and epithelial tumor stem cell function has not been
addressed. Here, we demonstrate that NF-xB can enhance
Whnt-signaling leading to the dedifferentiation of epithelial non-
stem cells into tumor-initiating cells.

RESULTS

Constitutive Activation of 3-Catenin in IEC Results

in Rapid Expansion of Intestinal Crypt Stem Cells and
TNFa-Dependent NF-«B Activation

To directly examine Wnt-dependent tumor initiation, we used a
mouse model with a tamoxifen-inducible and conditional stable
expression of B-catenin in |EC (villin-creER™/Ctnnb'™E®WT
termed g-cat®®). Upon oral tamoxifen gavage, Cre recombina-
tion was induced in all intestinal epithelial compartments
including stem cells. This led to excision of exon 3 of Ctnnb,
thereby resulting in a stabilized protein, which fails to undergo
GSKB3B-mediated degradation (Harada et al., 1999). As a conse-
quence, B-catenin became constitutively active in IEC, which re-
sulted in an almost complete loss of differentiated, absorptive
enterocytes and a massive expansion of highly proliferative crypt
stem cells that expressed high levels of the Wnt target c-myc

(Figures 1A-1H). Following tamoxifen administration @-cat®®
mice showed signs of severe weight loss and succumbed to
the intestinal transformation within 27 days (Figure 1l). Notably,
kB kinase activity (Figure 1J) as well as NF-kB-binding activity
was markedly elevated in isolated IEC (Figure 1K), whereas
immunohistochemical analysis demonstrated nuclear accumu-
lation of RelA/p65 in expanded crypt cells of §-cat®® mice
(Figures 1L-1N). TNFa and IL-13 are considered two of the
most common upstream activators of NF-kB signaling in inflam-
matory diseases and tumors (Karin and Greten, 2005). To ex-
amine whether these cytokines were responsible for the
observed NF-«kB activation in 8-cat®® mice, we pharmacologi-
cally inhibited TNFa and IL-18 by using etanercept and anakinra,
respectively. Although inhibition of TNFa markedly reduced
NF-«B binding, blockade of IL-1p had no effect (Figure 10) and
loss of Tnf significantly prolonged survival of g-cat®® mice
(median survival 23 days in B-cat®®/Tnf’~ mice versus
30 days in 8-cat®®/Tnf~'~ mice; Figure 1P). Collectively, these
results indicate that extrinsic factors, such as TNFa, that act in
a paracrine and/or autocrine manner induce classical NF-kB
activation in §-cat®® IEC.

Inhibition of NF-«B in IEC Prolongs Survival and Delays
Crypt Transformation in g-cat®® Mice

To directly examine whether NF-«kB activity in IEC was causally
involved in the expansion of intestinal crypt cells and decreased
survival, we crossed floxed Rela animals to G-cat®® mice.
Indeed, loss of RelA/p65 function specifically in IEC significantly
prolonged survival of g-cat®® mice by 50% (median survival
22 days in 8-cat®®/Rela”’"T mice versus 33 days in g-cat®®/
Rela®E® mice; Figure 2A). This effect was even more pro-
nounced than whole-body deletion of Tnf, indicating that apart
from TNFa also other upstream activators can signal to NF-«B
in B-cat®® mice. Because 8-cat®®/Rela®E° compound mutants
were histologically comparable to single 3-cat®? mice in terms
of proliferation and apoptosis index at their respective time of
death (data not shown), we examined mice of both genotypes
15 days after the first tamoxifen treatment, 5 days before the
death of the first 8-cat®® animal.

Also at this time point, no difference in the number of apoptotic
cells was detected (data not shown); however, expansion of
proliferative crypt stem cells was reduced in §-cat®®/Rela®c°
mice when compared to f-cat®® mutants (Figures 2B-2E)
and alkaline phosphatase staining, labeling differentiated, and
absorptive enterocytes confirmed an increased villus-to-crypt
cell ratio in g-cat®?/Rela®E® mice (Figures 2F and 2G). Con-
sistently, with a more differentiated phenotype, RelA-deficient
B-cat®® mice retained a significantly higher expression of
mRNAs encoding sucrase-isomaltase, MUC-2, and synapto-
physin, which are markers for enterocytes, goblet cells, and
enteroendocrine cells, respectively (Figure 2H). Furthermore,
comparative gene expression analysis and gene set enrichment

(N) Quantification of nuclear RelA/p65-expressing IEC. Data are mean + SE; n > 3; ***p < 0.0001 by t test.
(O) NF-kB activity can be blocked by administration of etanercept but not anakinra. Specificity of NF-kB complex was confirmed by competition assay with

50-fold unlabeled oligonucleotide.

(P) Kaplan-Meier survival curve of -cat®®/Tnf '~ compound mutant mice (pink solid line; n = 9) compared to §-cat®®/Tnf*'~ mice (pink dashed line; n = 13;
p < 0.0001 by log rank test). Note that survival of 8-cat®®/Tnf*~ mice was comparable to -cat>* mice (dashed black line).
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Figure 2. Loss of Rela in 3-cat®® IEC Prolongs Survival and Inhibits Stem Cell Expansion
(A) Kaplan-Meier survival curve of heterozygous floxed Rela mice (8-cat®/Rela'™/"T; n = 12) and 8-cat®®/Rela*'= mice (n = 13), p = 0.0001 by log rank test.

(B-E) Representative H&E stained sections (B and C) and immunohistochemical analysis (D and E) of 8-cat®? and -cat®®/Rela*'=®

mice on day 15 of the model

showing reduced crypt expansion as well as decreased expression of BrdU in §-cat®?/Rela®'= mice (C and E) compared to §-cat®? mice (B and D; proliferation
index: 0.31 + 0.016 in §-cat®? mice versus 0.13 + 0.006 in B-cat®?/Rela®'®C mice; data are mean + SE; n = 3 of each genotype; p < 0.0001).

(F and G) Alkaline phosphatase staining of small intestinal sections from g-cat®® and g-cat®®/Rela®'E° mice on day 15 of the model.

(H) Relative mRNA expression of differentiation markers in IEC of WT and g-cat®®, as well as Rela®'=® and §-cat®*/Rela®"E° mice on day 15. Data are mean = SE;

n > 3; *p < 0.05 by t test.

() GSEA analysis comparing §-cat®? and g-cat®®/Rela®'=C probe sets with “stem cell transcripts.”

(J) Relative mRNA expression of intestinal stem cell markers in IEC of WT and §-cat®?, as well as Rela'®C and [5’-cat°‘a'/RelaA'EC mice on day 15. Data are mean +

SE; n > 3; *p < 0.05 by t test.

analysis (GSEA) on RNA samples isolated from IEC of wild-type,
Rela®'®C, g-cat®®, and @-cat®®/Rela®'®C mice 15 days after
tamoxifen administration revealed a marked downregulation of
a large number of Wnt targets in IEC of g-cat®®/Rela*'E° mice
recently identified as components of an “intestinal stem cell tran-
scriptome” (van der Flier et al., 2009) compared to §-cat®®
(normalized enrichment score 2.58, p < 0.001; Figure 2I). Differ-
ential expression of several of these stem cell genes, such as
Lgrb, Ascl2, Tnfrsf19, Fstl1, Ephb3, Cd44, Rnf43, Igfbp4,
Zfp503, and Sox9 was validated by quantitative real-time PCR

28 Cell 152, 25-38, January 17, 2013 ©2013 Elsevier Inc.

(Figure 2J). Collectively, these data suggested that NF-kB could
affect the development of a crypt progenitor phenotype and the
initiation of adenomatous cell transformation through the regula-
tion of Wnt-dependent intestinal stem cell gene expression.

NF-«kB Directly Interacts with p-Catenin and Modulates
pB-Catenin Binding Activity

B-catenin can physically interact with RelA/p50 dimers in various
human cancer cell lines (Deng et al., 2002). In light of the
profound differential regulation of the Wnt-dependent stem cell



signature in RelaA/p65-deficient (-cat®® mice, we tested
whether NF-«kB could possibly complex with B-catenin in primary
IEC as well and whether this interaction might affect B-catenin’s
binding to the Tcf/Lef consensus motif. Indeed, when we pulled
down endogenous B-catenin from IEC of wild-type and §-cat®*
mice, RelA/p65 was weakly bound to the immunoprecipitated
protein from wild-type IEC, but this interaction was strongly
enhanced upon B-catenin stabilization (Figure 3A). To assess
3-catenin DNA-binding activity in IEC, we performed DNA affinity
precipitation assays (DAPA) by using a biotinylated Tcf/Lef
consensus sequence to precipitate proteins that bind specifi-
cally the Tcf/Lef motif. Immunoblotting of the precipitates
confirmed that stabilization of mutant B-catenin strongly induced
its binding to DNA, which, however, was greatly diminished in the
absence of RelA/p65 and absent when a mutant control oligonu-
cleotide was used (Figure 3B). Moreover, a direct association of
RelA/p65 with the promoters of these Wnt-regulated stem cell
genes was confirmed by quantitative chromatin immunoprecip-
itation (ChIP) assay (Figure 3C). Association of B-catenin and
RelA/p65 at these promoter regions was confirmed by Re-
ChIP analysis (Figure 3D). To rule out that changes in DNA
binding were caused by the skewed crypt-villus ratio in mice of
different genotypes, we confirmed that TNFa could increase
binding of B-catenin to the Tcf/Lef motif in 293 cells that had
been transfected with a S33Y mutant of B-catenin along with
wild-type Tcf4 (Figure 3E). Furthermore, a constitutively active
form of IKKB (IKKBEE) also dose dependently induced interaction
of B-catenin and Tcf-4, B-catenin and RelA/p65, and B-catenin
and CREB-binding protein (CBP), a common coactivator of
both NF-«B and B-catenin (Figure 3F) suggesting that NF-xB
could modify Wnt-signaling through recruitment of CBP. Indeed,
siRNA mediated CBP knockdown confirmed that 3-catenin/p65
interaction and TNFa-induced increase in Wnt-reporter activity
was dependent on the presence of this coactivator (Figures 3G
and 3H).

Loss of Ikba Accelerates Crypt Transformation and
Suggests Dedifferentiation of IEC in 3-cat®® Mice

To examine whether enhanced NF-«kB activation could con-
versely promote crypt stem cell expansion, we crossed §-cat®®
mice to floxed lkba mice (Rupec et al., 2005), enabling IEC-spe-
cific constitutive NF-«kB activity along with persistent g-catenin/
Tcf4 signaling in 8-cat®®/lkba*'E® compound mutants. Expect-
edly, deletion of IkBa. enhanced NF-«kB binding in IEC (Figure 4A)
and accelerated IEC transformation, leading to a significantly
shortened survival of §-cat®® mice by 32% (median survival
was 22 days in g-cat®®/Ikba' ™"V versus 15 days in g-cat®®/
Ikba*'EC mice; Figure 4B). Pronounced NF-kB activation
increased B-catenin binding and recruitment of RelA/p65 to the
Tcf/Lef consensus site and enhanced interaction of B-catenin
with CBP (Figure 4C) further demonstrating that NF-kB can
recruit CBP to interact with B-catenin thus stimulating Wnt-
dependent transcription. Apart from a massive accumulation of
highly proliferative, crypt stem cells expressing c-myc (data not
shown), B-cat®®/lkba™E® double mutants frequently displayed
aberrant foci along the villus epithelium resembling crypt struc-
tures (Figure 4D). These foci were actively proliferating and
expressed nuclear B-catenin as well as the crypt marker c-myc

(Figures 4E-4G) and could be detected within 24 hr after tamox-
ifen administration (Figure S1 available online). Furthermore,
in situ proximity ligation assay confirmed direct interaction of
RelA/p65 and B-catenin in these cells (Figure 4H). Previous
reports had demonstrated that Apc-deficient crypt cells fail to
migrate out of the crypt due to maintenance of EphB expression,
which results in subepithelial transformed clones (Batlle et al.,
2002). Similarly, crypt-like foci in g-cat®®/Ikba™EC mice ex-
pressed EphB3 (Figure 4l) and detached from the surrounding
villus epithelium and invaded into the subepithelium, where
they formed adenomatous crypts (Figure S1). However, these
results seemed to be in apparent contrast to the notion that
intestinal cancers arise from Lgr-5-positive crypt stem cells
rather than postmitotic differentiated enterocytes (Barker et al.,
2009). We therefore asked whether the observed villus crypt-
like foci could have regained stem cell properties, formally
enabling them to initiate formation of adenomatous crypts.
Indeed, lkba-deficient villus crypt-like foci expressed Ascl-2
and SOX9 (Figures 4J and 4K) as well as the stem cell markers
Lgr5 and Rnf43 (Figures 4L and 4M). These data suggested
that NF-xkB mediated enhancement of B-catenin signaling in
villus cells allowed a dedifferentiation program and occurrence
of crypt stem cells in an aberrant position. Re-expression of
the stem cell marker Lgr5 in these newly formed crypts sup-
ported the hypothesis that these cells could initiate adenoma-
tous crypt formation. Interestingly, however, loss of IEC IkBa
alone was not sufficient to enhance transcription of crypt stem
cell markers in B-catenin wild-type mice (Figure S1).

Villus Cells Can Dedifferentiate Ex Vivo and Form

Spheroids that Have the Capacity to Form Tumors

To confirm that villus cells have the capacity to dedifferentiate
and to regain stem cell properties when B-catenin signaling
is hyperactivated, we employed a recently developed orga-
noid culture system (Sato et al., 2009) by using IEC from
villin-creER™/Apc'™/'°*  (Apc®'EC) or villin-creER™?/Apc''*/
K-ras®12P* mice (Apc*'®C/K-ras®1?P) mice. Oncogenic K-ras
strongly cooperates with deregulated Wnt signaling conferred
by Apc loss or activating Ctnnb mutations (Bennecke et al.,
2010; Janssen et al., 2006; Sansom et al., 2006), although it
can also induce NF-kB activation (Perkins, 2012). In contrast to
wild-type crypts that maintained dependence on the presence
of R-spondin in the culture medium, cultured crypts derived
from both Apc®EC and Apc'®C/K-ras®12P formed spheroids,
histologically resembling adenomas, even in the absence of
R-spondin because of constitutively active Wnt signaling when
crypts were isolated 2 days after a single tamoxifen administra-
tion (Figures 5A and 5B). Apc*'E¢/K-ras®'?P crypt cells were
characterized by markedly elevated NF-«B activation compared
to cells from Apc single mutants (Figure 5C). Next, we examined
whether villi isolated from Apc®'EC and Apc*'E¢/K-ras®'?P mice
would convert into R-spondin-independent spheroids when iso-
lated 2 days after tamoxifen administration. At this time point villi
of mice of both genotypes appeared histologically comparable
and did not contain any Lgr5* cells (Figure S2). Although villi
from wild-type or Apc'E€ mice did not survive in culture, villi iso-
lated from Apc*'EC/K-ras®?® compound mutants formed
spheroid structures that could indeed be maintained without

Cell 152, 25-38, January 17, 2013 ©2013 Elsevier Inc. 29
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Figure 3. NF-kB and B-Catenin Interact via CBP to Modulate -Catenin DNA Binding
(A) Immunoblot analysis of proteins that were immunoprecipitated from lysates from WT and §-cat®>® mice on day 15.

B) DNA affinity precipitation assay (DAPA) and immunoblot analysis (WB) of lysates prepared from isolated IEC from WT and §-cat®®, as well as Rela®Ec
( y precipi y y y: prep:

and
8-cat®?®/Rela®EC mice on day 15.

(C) Quantitative chromatin immunoprecipitation (ChIP) assay on DNA isolated from IEC of WT and §-cat®® mice on day 15. Precipitated DNA or 10% of chromatin

input was amplified with gene-specific primers amplifying promoter regions, which contain p-catenin/Tcf consensus motifs (Yochum et al., 2007) but no classical
kB-binding sites. Data are mean + SE; n > 4.

(D) Re-ChlIP assay on DNA isolated from IEC of a -cat®® mouse on day 15 with a B-catenin antibody for the first precipitation followed by a second immu-
noprecipitation after DNA isolation with p65 antibody. In negative control second immunoprecipitation was omitted.

(legend continued on next page)
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Figure 4. Increased NF-«kB Activity Shortens Survival and Induces Dedifferentiation of Villus Cells in 3-cat®® Mice
(A) NF-kB binding activity in IEC isolated from lkba-deficient 8-cat®® mice on day 10.

(B) Kaplan-Meier survival curve of g-cat®2/Ikba™E® mice (n = 11) and g-cat®? Ikba™"VT mice (n = 12); p < 0.0001 by log rank test.
(C) Immunoblot analysis (WB) and DAPA of lysates prepared from isolated IEC from §-cat®? and g-cat®®/Ikba "= mice on day 10.

D) Representative H&E stained section of a §-cat®?/Ikba*'=®

E-G) Immunohistochemical analysis of 8-cat®®/Ikba™'c°

villus on day 10. The arrowheads indicate crypt-like cell structures in an aberrant localization.
villus crypt-like structures.

H) Duolink proximity ligation assay demonstrating close proximity of p-catenin and RelA/p65 suggesting interaction in -cat®®/Ikba*'® villus crypt-like struc-

1-K) Aberrant villus crypts express stem cell markers EphB3 (I), ASCL-2 (J) and SOX9 (K).

(
(
(
tures. Dashed white line marks aberrant crypt structure, arrowheads denote regions of signal amplification (red). Nuclei are stained with DAPI.
(
(

L and M) In situ hybridization with probes specific for Lgr5 and Rnf43 reveals stem cell properties of 3-cat®®/lkba

See also Figure S1.

R-spondin (Figure 5D). Similar results could be obtained with
villus cells derived from g-cat®?/Ikba*'EC mice (data not shown).
Importantly, the specific IKKB inhibitor ML120B (Nagashima
et al., 2006) completely abolished spheroid formation in Apc'E¢/
K-ras®?P villus cells and reduced sphere formation of Apc'E/
K-ras®12P crypts by more than 60% (Figures 5D and 5E). Spher-
oids originating from Apc*'¥¢/K-ras®'2P villus or crypt cells were
morphologically comparable (Figures 5F-5I) and both retained
their size over several passages (Figure 5J), supporting the
notion that they both comprised cancer stem cells. Indeed,

AIEC villus crypt-like structures.

when we injected Apc®'C/K-ras®'2P villus-derived spheroids
subcutaneously into nude mice, they formed tumors with growth
characteristics similar to those of the crypt-derived spheroids
(Figure 5K). Tumors from both crypt and villus-derived spheres
were highly proliferative, strongly expressed Lgr5 (Figure 5L),
and developed independently of spheroid passage number (Fig-
ure S2). Lysozyme™* Paneth cells were detectable in tumors of
either origin (Figure 5L), further underscoring the pluripotent
potential of spheroids derived from both crypts and villi. When
we separated Lgr5* and Lgr5~ cells from villus-derived spheres,

(E and F) DNA affinity precipitation assay (DAPA, [E]), and immunoblot analysis (WB) (F) of protein lysates prepared from 293 cells transfected with -catenin

S33Y

and Tcf-4, that were either stimulated with TNF-a (10 ng/ml) for 60 min (E) or cotransfected with increasing amounts (0, 0.5, and 1 ug) of IKKBEE (F).

(G) Immunoblot analysis of protein lysates prepared from 293 cells transfected with 3-catenin

siRNA pool.

(H) Relative luciferase activity with a Tcf/Lef reporter (TOPFLASH) in protein lysates prepared from 293 cells transfected with B-catenin

S33Y and Tcf-4 along with scramble siRNA control or a CBP targeting

S33Y and Tcf-4 along with

scramble siRNA control or a CBP targeting siRNA pool untreated or stimulated with TNF-o (10 ng/ml) for 8 hr. Data are mean + SE; n > 3.
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crypts or vill. Lgr5 expression was detected
by in situ hybridization.
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population was confirmed by PCR (data not
shown).
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both populations retained the capacity to initiate subcutaneous
tumor growth with similar kinetics (Figures 5M and 5N) even
when we performed serial transplantations over several
passages (data not shown), and tumors from initially Lgr5~ pop-
ulation re-expressed Lgr5 (Figure 50). Moreover, limiting dilution
experiments did not reveal any differences in the ability to initiate
subcutaneous tumors between Lgr5* and Lgr5~ cells from villus-
derived spheres (Figures 5P-5R). Collectively, these results
strongly support the notion that villus cells can reacquire cancer
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tumor volume (mm?)

GFP~ (indicating Lgr5~) cells from villus-derived
spheroids.

(Q and R) Tumor growth kinetics in CD1 athymic
mice after subcutaneous injection of indicated
number of Lgr5* (Q) or Lgr5™ cells (R) from villus-
derived spheroids. Data are mean + SE. See also
Figure S2.
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stem cell properties by dedifferentiation when Wnt signaling is
elevated in a NF-kB-dependent manner.

Hyperactivation of 3-Catenin Signaling in Lgr5~ Cells
Induces Dedifferentiation and Initiation of
Tumorigenesis

Because villin-creER™ mice recombine in both Lgr5~ differenti-
ated and Lgr5* stem cells, crypt-like foci in 3-cat®® and §-cat®/
Ikba™EC mice could theoretically have originated from the



Lgr5* cells at the base of the crypt and migrated upward. Thus, in
order to formally prove that dedifferentiated villus cells can
initiate tumorigenesis in vivo, we generated a Cre-expressing
mouse that allowed recombination in Lgr5™ cells only. Based
on the observation that splicing and thus activation of the tran-
scription factor X-box-binding protein 1 (XBP1), a key compo-
nent of the endoplasmatic reticulum (ER) stress response,
constitutively occurs under physiologic unchallenged conditions
in Lgr5~ IEC, but not Lgr5*, stem cells (J.H. and G.R.v.d.B.,
unpublished data, and Figure S3), we hypothesized that
Xbp1s-creER™ mice would permit recombination specifically
in Lgr5~ IEC. Indeed, lack of recombination in Lgr5* and Bmi1*
stem cells was confirmed by lineage tracing in Xbp1s-creER™>-
Rosa26R-dtTomato mice (Figures 6A-6C). Within 24 hr, red fluo-
rescence indicating recombination was detectable in IEC above
the crypt villus junction as well as in Paneth cells, a cell type in
which XBP splicing confers important functions (Kaser et al.,
2008) (Figures 6A and 6B). Importantly, PCR on FACS-sorted
RFP-positive and -negative IEC confirmed absence of Lgr5* or
Bmi1* expression in RFP* cells. Consequently, 33 days after
tamoxifen administration, red fluorescent IEC were completely
absent. Lack of recombination by Xbp1s-Cre in Lgr5* or Bmi1*
stem cells was further functionally confirmed and considered
the missing adenomatous transformation or stem cell expansion
in mice with single activation of B-catenin only in Lgr5~ IEC of
Xbp1s-creER™/Ctnnb™ T compound mutants (Figures
6E-6G). In contrast, loss of a Ctnnb exon 3 in Lgr5* stem cells
using Lgr5-EGFP-IRES-creER™/Ctnnb'®"WT mice resulted
in massive transformation and death of the animals within
45 days (Figure 6E) similar to the results of previously reported
Bmi1-creER™/Ctnnb'“®®WT mice (Sangiorgi and Capecchi,
2008). However, when B-catenin activation was enhanced by
the concomitant loss of IkBa in homozygous Xbp1s-creER™%/
Ctnnb'Ex3/10xEx3 1, b ]o¥/oX mice or the simultaneous activation
of oncogenic K-ras in Xbpls-creER"?/Ctnnb'>®%/Kras®12P
compound mutants, tumor initiation commenced and adenoma-
tous polyps occurred within 30 days (Figures 6H and 6J), recapit-
ulating the phenotype we had observed in the organoid culture
system. These polyps were highly proliferative and characterized
by elevated NF-kB activation when compared to IEC of g-cat®®
mice (Figure S3). Most importantly tumors re-expressed stem
cell markers Lgrb and Rnf43 (Figures 6H and 6J) and displayed
increased expression of genes encoding members of the
“stem cell signature” (Figure 6l) providing direct genetic
evidence for dedifferentiation of Lgr5~ IEC in vivo. In agreement
with the lineage tracing data (Figure 6A), expression of nuclear
B-catenin and Ki-67 could be observed in cells above the
crypt-villus junction 24 hr after tamoxifen administration in
mice (Figures 6K and 6L), suggesting that these comprised
the cells of origin of tumors in Xbp7s-creER™/ Ctnnb'>E<®/
Kras®'2P mice.

DISCUSSION

Cell-type plasticity as it can be observed during epithelial-
mesenchymal transition (EMT) has been suggested to be an
important prerequisite for the metastatic spread of solid tumors
during the tumor progression stage (Polyak and Weinberg,

2009). EMT correlates with B-catenin expression in colorectal
cancer and has been associated with dedifferentiation of
invading cells (Brabletz et al., 2005). Accordingly, it was recently
suggested that dedifferentiation of nonstem cells triggered by
signals from the inflammatory microenvironment may also lead
to the generation of cancer stem cells (Gupta et al., 2009;
Hanahan and Weinberg, 2011). So far, in vivo evidence for the
existence of dedifferentiation has been limited to mouse differ-
entiating spermatogonia that can generate germinal stem cells
(Barroca et al., 2009) as well as mammary luminal cells that
can convert into mammary stem cells upon overexpression of
Sox9 and Slug (Guo et al., 2012). In the context of tumorigenesis
a subpopulation of basal-like human mammary epithelial cells
recently was shown to spontaneously convert into cancer-
stem-cell-like cells in vitro (Chaffer et al., 2011). Here, we demon-
strate in a genetic model of intestinal tumor initiation that
epithelial nonstem cells can re-express stem cell markers and
can be converted into tumor-initiating cells. This phenomenon
is strictly dependent on the degree of Wnt activation and can
only be observed when Wnt signaling is markedly elevated.
Two models for the histopathogenesis of colorectal cancer
have been proposed: a “top-down” model suggesting that
dysplastic cells spread laterally and downward to form new
crypts (Shih et al., 2001) and a “bottom-up” model that is based
on transformation and expansion of crypt stem cells (Preston
et al., 2003). Recently, it was demonstrated that Lgr5* cells
comprise the tumor-initiating cell population (Barker et al.,
2009), whereas they can be repopulated by Bmi1* cells after
tissue damage (Tian et al., 2011). Because under physiological
circumstances these cells reside exclusively at the bottom of
intestinal crypts (Barker et al., 2007), the “bottom-up” model
seemed to represent the prevailing concept. We now provide
genetic evidence that Lgr5~ enterocytes have the potential to
dedifferentiate and to reacquire stem cell properties including
Lgr5 expression lending support for a “top-down” model.
Thus, we suggest that these models do not exclude each other
and that tumor-initiating mutations can occur in both Lgr5* crypt
stem cells or in more differentiated Lgr5~ cells, as long as these
initially negative cells dedifferentiate and re-express Lgr5
(Figure 7).

Reprogramming of differentiated cells into induced pluripotent
cells (iPS) ex vivo can be achieved through the combined activa-
tion of selective transcription factors (Jaenisch and Young,
2008). Thus, it is reasonable that IEC also may have the capacity
to dedifferentiate in vivo as long as the required transcriptional
program for such process, in this case Wnt signaling, is strongly
enough activated. Our results agree with previous findings and
show that neither in vitro nor in vivo single stabilization of
B-catenin nor loss of Apc alone is sufficient to drive dedifferenti-
ation (Barker et al., 2009). However, concomitant activation of
cooperating oncogenes, such as K-ras, as well as cytokine-
triggered activation of NF-kB enhances B-catenin/Tcf-mediated
transcriptional activity that provides initial nonstem cell IEC with
tumor stem cell properties. This may suggest that induction of
a single pathway may be sufficient to induce dedifferentiation
toward a tissue-specific stem cell compared to the activation
of several factors required for pluripotency (Jaenisch and Young,
2008). However, we cannot entirely rule out additional direct
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Figure 6. Dedifferentiation of Nonstem Cells Allows Initiation of Tumorigenesis In Vivo

(A and B) RFP expression in Xbp 1s-creER"2-Rosa26R-dtTomato mice 24 hr after tamoxifen administration indicating recombination in cells above the crypt villus
junction (A) and in Paneth cells (B).

(C) PCR indicates expression of stem cell markers Lgr5 and Bmi1 only in nonrecombined RFP~ stem cells.

(D) Absence of RFP expression in IEC of Xbp1s-creER"-Rosa26R-dtTomato mice 33 days after tamoxifen administration.

(E) Kaplan-Meier survival curve of Lgr5-IRES-EGFP-creER"2/Ctnnb'®*WT (n = 7) and Xbp1s-creER"2/Ctnnb'>®*WT (n = 8) mice that were given the same
amount of tamoxifen (5 x 1 mg), p < 0.0001 by log rank test. Note that differences in survival between g-cat®? mice (Figure 1A; villin-creER™/Ctnnb'“®WT) and
Lgr5-IRES-EGFP-creER™/Ctnnb'®*T mice is due to a lower recombination efficiency in Lgr5-IRES-EGFP-creER™ mice causing a lower frequency of actual
stem cell hits (P.C. and O.J.S. et al., unpublished data).

(F and G) Immunohistochemical staining of B-catenin (F) and BrdU (G) in intestines of Xbp1s-creER™2/Ctnnb'™®*WT mice 50 days after the first tamoxifen
administration confirms only sporadic positively stained cells outside the crypt compartment.

(H) Representative H&E staining, immunohistochemical analysis of BrdU incorporation and c-myc as well as in situ hybridization of Rnf43 in the proximal small
intestine from a Xbp1s-creER"2/Ctnnb'E®/10xBx3) 1, b o|o¥/1oX mayse 29 days after tamoxifen administration confirming re-expression of stem cell markers.

(legend continued on next page)
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Figure 7. “Bottom-Up” and “Top-Down” Models of Intestinal Tumorigenesis Do Not Exclude Each Other

(A) Model summarizing the proposed signaling mechanism in IEC: TNFa or oncogenic K-ras enhance B-catenin activation through induction of canonical NF-kB
activation, which leads to recruitment of CBP and binding to B-catenin/Tcf to enhance transcription of Wnt-dependent stem cell genes.

(B) Schematic presentation of two possible ways of polyp formation that depend on the extent of Wnt activation: in case of modest Wnt activation caused by loss
of Apc or Ctnnb mutation stem cell expansion and tumorigenesis is initiated only when Lgr5* crypt stem cells (red) are mutated otherwise cells are shed off.
Mutated Lgr5* cell invaginate around the crypt villus junction and invade into the subepithelium representing the “bottom-up” model. The lower model suggests
that initially Lgr5~ cells reacquire Lgr5-expression upon enforced B-catenin signaling, therefore providing these dedifferentiated cells with the same properties as
crypt stem cells (i.e., Lgr5 expression) to invade into the subepithelium thus providing evidence that the top-down model and the bottom-up model of adenoma

morphogenesis do not exclude each other.
See also Figure S4.

effects of K-ras and NF-kB on some of the essential stem cell
genes considering that NF-kB has recently been reported to
control expression of Ascl-2 (Vlantis et al., 2011).

Various modes of cross-regulation between NF-«B and
B-catenin signaling pathways have been proposed in different
tumor cell lines (Deng et al., 2002; Spiegelman et al., 2000).
We propose that in primary IEC, NF-«B enhances Wnt-signaling
by binding of RelA/p65 to B-catenin via CBP. Although it was
suggested that B-catenin activation inhibits NF-kB in colon
cancer cells (Deng et al., 2002), we show that stabilization of
mutant B-catenin is associated with elevated NF-«B activation
in primary IEC in vivo. This is at least in part dependent on
TNFa that acts in a paracrine or presumably autocrine manner
because most TNFa in intestine originates from IEC (Chen
et al., 2003; Guma et al., 2011). Interestingly, not only TNFa
but also oncogenic K-ras can induce NF-«kB activation in IEC,
and both enhance thereby interaction of B-catenin and CBP
(Figure 7 and Figure S4). Accordingly, the capacity of oncogenic
K-ras to dedifferentiate Apc-deficient villus cells in vitro depends
on NF-kB activation.

Cell-type plasticity during tumor development such as trans-
differentiation has also been suggested in other tumor entities
including pancreatic cancer (Gidekel Friedlander et al., 2009;
Guerra et al., 2007; Wagner et al., 2001). Interestingly, during

pancreatic carcinogenesis this frequently occurs in the context
of tissue inflammation and allows tumor initiation from otherwise
refractory cell types (Gidekel Friedlander et al., 2009; Guerra
et al.,, 2011; Guerra et al., 2007). Similarly, in ulcerative colitis
patients we found massive expansion of OLFM4-expressing
epithelial cells in aberrant positions (Figure S4). In the absence
of oncogenic mutations this may represent a physiological
wound healing response and may allow de novo crypt formation
thereby providing an attractive possible explanation how large
ulcerations can be reconstituted in addition to crypt fission.
However, at the same time this suggests that chronic inflamma-
tion may increase the number of potentially tumor-initiating cells
by dedifferentiation thus providing an additional explanation of
why such patients have an elevated risk of developing colon
cancer. However, our data may not only be relevant for tumor
initiation in the context of chronic inflammation but could also
have an impact for the therapy of advanced cancers such as
strategies aiming at the eradication of tumor stem cells. Particu-
larly in colorectal tumors harboring both APC and KRAS
mutations we speculate that tumor stem cells could easily be
replenished by dedifferentiation. However, inhibition of IKKp/
NF-kB may be a potent strategy to prevent such effects.

In summary, we provide direct genetic evidence that dediffer-
entiation can lead to the formation of tumor-initiating cells that

() Relative mRNA expression of intestinal stem cell markers in IEC of WT and Xbp1s-creER™%/Ctnnb'™®®10xEx3)), b olox/lox mice 29 days after first tamoxifen

application. Data are mean + SE; n > 3.

(J) Representative H&E staining, immunohistochemical analysis of Ki-67 and c-myc as well as in situ hybridization of Lgr5 in the proximal small intestine from
a Xbp1s-creER™/Ctnnb'®/K-ras®'2P mouse 29 days after tamoxifen administration.
(K and L) Immunohistochemical staining of B-catenin (K) and Ki-67 (L) in mice 24 hr after tamoxifen administration indicating recombination in cells above the

crypt-villus junction.
See also Figure S3.
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questions a strict unidirectional model of the stem-differentiation
hierarchy but rather lends support to a model of bidirectional
interconvertibility (Gupta et al., 2009).

EXPERIMENTAL PROCEDURES

Mice

To delete exon 3 of Ctnnb in IEC, we crossed Ctnn Harada et al.,
1999) with villin-creER™ mice (kindly provided by S. Robine), Lgr5-EGFP-
IRES-creER™ (Barker et al., 2007), or Xbp1s-creER™ mice. To delete Apc
and to activate oncogenic K-Ras in IEC, we crossed mice carrying the condi-
tional Apc®®°S allele (Shibata et al., 1997) or LSL-K-ras®’?P (Jackson et al.,
2001) with villin-creER™ mice. Xbp1s-creER™ transgenic mice were gener-
ated by replacing the venus coding sequence in the pCAX-F-XBP1ADBD-
venus plasmid (lwawaki et al., 2004) with the sequence encoding creER™.
Tnf~/~ and Rosa26R-tdTomato reporter mice were purchased from the
Jackson Laboratories. All mice were on a mixed C57BL/6 X 129Sv x FVB
background, and in all experiments littermate controls were used. Cre-recom-
binase was induced by five daily oral administrations of 1 mg tamoxifen
(Sigma) in an ethanol/sunflower oil mixture. All experiments were performed
under the UK Home Office guidelines as well as reviewed and approved by
the Regierung von Oberbayern.

bloxEx3/WT (

Villus Isolation and Propagation

Small intestines were washed with PBS and opened longitudinally. Villi were
removed with a glass coverslip, washed in PBS, and centrifuged at 100 g for
3 min to separate villi from single cells. One hundred to 150 villi, mixed with
50 ul of Matrigel (BD Bioscence), were plated in 24-well plates and cultured
as described (Sato et al., 2009). For transplantation experiments, 50 spheres
(containing around 100 cells/sphere) were suspended in 100 pl Matrigel and
injected s.c. into 6-week-old female athymic (CD1) mice.

Protein Analysis

Isolation of enterocytes, immunoblot analysis, immunecomplex kinase assay,
and electrophoretic mobility shift assay (EMSA) were performed as described
previously (Greten et al., 2004). In DAPA protein lysates were incubated with
2 ng of 5’ biotin labeled double-stranded oligonucleotides containing two
Tcf/Lef binding sites (5'-CCCTTTGATCTTACCCCCTTTGATCTTACC-3) or a
scrambled control oligonucleotide (5-TTTCCCCTTGATACCTTTCCCCTTGA
TACC-3') in the presence of excess herring sperm DNA for 90 min at room
temperature (RT) prior to pull down with Streptavidin-agarose beads (Pierce).
The following antibodies were used in immunoblot analysis: a-B-catenin (Santa
Cruz, SC-1496), a-RelA/p65 (SC-372), a-IkBa (SC-371), «-CBP (SC-369),
a-IKKB (Upstate 05-535), a-IKKa. (IMG-136A), and a-B-actin (A4700, Sigma).

Histological Procedures and In Situ Hybridization

For alkaline phosphatase staining paraffin sections (3.5um) were incubated for
2 hr at RT in nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate
solution. Nuclei were counterstained with Nuclear Fast Red (Vector). Standard
immunohistochemical procedures were performed with following antibodies:
a-p65 (Neo-Markers, RB-1638), a-c-myc (SC-788), a-B—catenin (SC-1496),
a-BrdU (Amersham Bioscience RPN201), a-EphB3 (R&D Systems, AF432),
a-ASCL-2 (Aviva Systems Biology, QC6671), 2-SOX-9 (Chemicon Millipore,
AB 5535). To detect protein interaction on paraffin sections, a Duolink
Proximity Ligation Assay in situ kit (Olink Bioscience) was used according to
the manufacturer’s instructions and in situ hybridization was essentially
performed as described previously (Barker et al., 2007).

Chromatin Immunoprecipitation Analysis

ChlP assays were performed with antibodies against p-catenin, RelA/p65, and
EGFR (negative control) according to published procedures (Saccani et al.,
2003). In brief, IEC were crosslinked with 1% formaldehyde for 10 min at
room temperature and quenched by adding glycine (0.125 M final concentra-
tion). IEC were homogenized in lysis buffer and chromatin was fragmented by
sonication. Lysates were precleared with salmon sperm/protein A agarose
(Upstate) for 1 hr. Chromatin IP was performed overnight with 1.5 pg of
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antibody and protein G magnetic beads (Active Motif). Precipitates were
washed and eluted in TE containing 2% SDS. Crosslinking was reversed for
a minimum of 4hrs at 65°C and DNA was purified with a QiaAmp DNA Micro
Kit (QIAGEN) prior to real-time PCR.

RNA Analysis

Total RNA extraction, cDNA synthesis, real-time PCR and gene expression
profiling was performed as described previously (Bennecke et al., 2010). In
gene set enrichment analysis (GSEA) we matched 94 “stem cell transcripts”
(van der Flier et al., 2009) to all transcripts from the Affymetrix Mouse Genome
430A 2.0 Array, respectively. GSEA software is provided by Broad Institute of
MIT and Harvard University (http://www.broad.mit.edu/gsea). We acknowl-
edge the use of GSEA software (Subramanian et al., 2005) to validate correla-
tion between molecular pathways signatures in any phenotype of interest. For
analysis of gene sets we changed default parameters as follows: permutation
number to 1,000; collapse data set to gene symbols if “false”; gene sets
smaller than 1 and larger than 2,000 were excluded.

Statistical Analysis

Data are expressed as mean + SEM. Differences were analyzed by log-rank or
Student’s t test with Prism4 (GraphPad Software). p values < 0.05 were
considered significant.
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Figure S1. Crypt-Like Structures Can Be Found within 24 Hours in 8-cat®®/lkba*'®C Mice, but Loss of Ikba Alone Is Not Sufficient to
Upregulate Stem Cell Markers in IEC, Related to Figure 4
(A) Crypt-like structure expressing BrdU in upper villi occur in -cat®®/Ikba™E® mice within 24 hr after tamoxifen administration.
(B) Immunohistochemial analysis of c-myc-expressing adenomatous crypts (arrowheads) in the subepithelium of B-cat®®/Ikba*'EC
structure that is in the process of invading into the subepithelium.

(C) Relative mMRNA expression of intestinal stem cell markers in IEC of WT, lkba®'® and g-cat®2/Ikba*'=C mice analyzed by Real-Time PCR. Data are mean + SE,
n> 3.

villi. Arrow indicates crypt-like
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Figure S2. Lack of Lgr5* Cells in In Villus Fractions Used for Organoid Cultures, Related to Figure 5

(A-D) Comparable morphological appearance and nuclear expression of f-catenin (C, D) in Apc’E€ (A, C) and ApcE€/K-ras®"?P (B, D) mice 2 days after a single
dose of tamoxifen.

(E) FACS analysis confirms absence of Lgr5+ cells in villus fractions used for organoid culture. Apc#’€ and Apc“/¢/K-ras®"?P mice had been crossed to Lgr5-
EGFP-IRES- creERT2 animals to allow sorting of Lgr5* cells based on EGFP expression. Adenomas from Lgr5-EGFP-IRES-creER™?/Apc’322" mice were used as
positive controls.

(F) PCR of Lgr5 and Bmi1 confirms absence of Lgr5 in isolated villus cells and re-expression of Lgr5 in villus-derived spheroids. In contrast, low levels of Bmi1
were detectable in villus preparations, however, these did not further increase in spheroids. Data are mean + SE, n > 3.

(G) Comparable histology of tumors that grew subcutaneously in CD1 athymic mice independently of spheroid passage or whether spheroids were derived from
crypts or villus preparations.

Similar results were obtained when villus cells were isolated 6 hr after tamoxifen administration in Apc?'€¢/K-ras®'2° mice.
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Figure S3. Constitutive Splicing of Xbp in Nonstem Cells Allows Recombination in Lgr5~ and Bmi1~ IEC, Related to Figure 6

(A and B) Immunohistochemial analysis of Xbp in WT mice. Note that only IEC known to be Lgr5 ™~ at the crypt villus junction, in the transit amplifying compartment
and Paneth cells stain positive.

(C) Immunohistochemical staining of GFP in unchallenged ER stress-activated indicator mice (ERAI-mice)(lwawaki et al., 2004) that drive expression of venus (a
variant of green fluorescent protein) in response to Xbp splicing. Interestingly, GFP expression in IEC of untreated mice reveals constitutive Xbp splicing. We
therefore reasoned that this observation would allow targeted expression of cre-ERT2 in Lgr5~ IEC, but not in Lgr5™* cells.

(D) The construct that was initially used to generate ERAI mice (generously provided by M. Miura) was used to replace the coding sequence of venus with a cre-
ER™ sequence, so cre-ER™ expression would be achieved only in cells that splice Xbp (C). The fact that Lgr5~ IEC revealed spontaneous Xbp splicing allowed
cre expression without exogenous induction of ER stress.

(E) EMSA and immunoblot analysis demonstrates elevated NF-kB activation and comparable expression of exon3 deleted B-catenin in Xbp1s-creER™/
Ctnnb'®3/K-ras®'2P mice compared to g-cat®? mice.
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Figure S4. Expansion and Aberrant Localization of Stem Cells in the Colon of Ulcerative Colitis Patients, Related to Figure 7

(A) EMSA and immunoblot analysis demonstrates elevated NF-«xB activation and increased interaction between CBP and B-catenin as well as RelA/p65 and
B-catenin in IEC from 8-cat®?3/K-ras®'2° mice animals compared to §-cat®? mice.

(B-D) In situ hybridization with a probe specific for the stem cell marker OLFM4 in human healthy mucosa (B) and in ulcerative colitis patients (C and D). Whereas in

healthy mucosa expression is restricted to cells at the bottom of colonic crypts, during ulcerative colitis expression is expanded and can be found outside of
crypts especially in IEC that cover ulcerations.

(E and F) Immunohistochemical staining of RelA/p65 (E) and B-catenin (F) in ulcerative colitis patients and healthy mucosa (small inset).
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